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Realistic calculation of the low- and high-density liquid phase separation in a charged
colloidal dispersion
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A realistic statistical-mechanics model is applied to describe the repulsive interaction between charged
colloids. The latter, in combination with the long-range van der Waals attraction simulated under excess salt
environment, gives rise to a total intercolloidal particle potential showing a clear second potential minimum.
Differing from the usual Derjaguin-Landau-Verwey-OverbdBt.VO) model, the present model is valid at
any finite concentration of colloids and is thus an appropriate model for investigating the low- and high-density
liquid phase transition. Employing this two-body colloid-colloid potential and in conjunction with the Weeks-
Chandler-Andersepl. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Bidy$237(1971)] thermo-
dynamic perturbation theory, we derive analytical expressions for the pressure, chemical potential, and related
thermodynamic functions. These thermodynamic quantities were used to calculate the phase diagrams of
charged colloidal dispersions in terms of the critical parameters: temperature, volume fraction, and electrolyte
concentration paramet&p . Compared with the DLVO model, we find the areas enclosed within the spinodal
decomposition and also the liquid-liquid coexistence curves broader in the present model for an excess salt
conditionk=kpoy=200, oy being the macroion diameter, in addition to exhibiting a shift in the critical point
k. to lower values; fork>300, the disparities between the two models reduce. The same thermodynamic
perturbation theory has been employed to study also the weak reversible coagulation whose physical origin is
attributed to the presence of the second potential minimum. We examine various colloidal parameters that
affect the structure of the latter and deduce from our analysis the conditions of colloidal stability. In compari-
son with the measured flocculation data for a binary mixture of polystyrene lattices and water, we find that our
calculated results are generally reasonable, thus lending great credence to the presently used model.
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[. INTRODUCTION phase. This feature is in marked contrast to the DLVO po-
tential, where the\ is z independent and, strictly speaking,
A charged colloidal suspension comprises a dispersivéhe DLVO model should be useful only for a dilute colloidal
host, which consists of macroions in thermal equilibriumsolution. The second characteristic is on the spatial correla-
with their dissociated counterions and both species are imHonS and the electrostatic response of the small ions to
mersed in a dispersive medium such as water. For highl harg?d.macromns. Bgth eﬁ;]eckt‘s are alpproxmf?tgly but rea-
charged macroions, the Coulomb interactions between co onably incorporated through the coupling coefficianand

. . . . ~“the screening parameter. This effective one-component
loidal particles are often complicated by the oppositely o rofuid modelé(x) has been proposed independently

charged counterions, since the number density of counteriongyriier by Belloni[1] and a year later by Khan, Morton, and
is generally very large. The complexity of these multicom-Ronis [2]. The two models were compared favoratpi]
ponent species will be further increased by the addition ofvith accurate numerical solutions of the hypernetted-chain
salts(coiong particularly for polyvalent electrolytes. Fortu- method for the structures of charged colloids. The model of
nately, for most charged colloidal dispersions, the macroiorBelloni, in particular, has been successfully applied to inter-
size, characterized by the hard-sphere diamegeris much  pret the micelle static structure facti®@] and to predict the

larger than that of the surrounding small iofunterions liquid-glass transition phase diagréi®]. Remarkably good

and salt and this property of size disparity has greatly Sim_ggtrﬁ_ement Wi;[h measured dﬁathas prolmp['_[ed “fSt;]O progeled,
plified theoretical analysis. In fact in the extreme limit of Il IS Paper, 1o & more quantitafive evaluation ot the mocet.

pointlike small ions and within the context of the mean The purpose of this paper is to apply the model to study the

herical S lsive i problems of phase equilibria, focusing in particular on the
spherical approximatioiMSA), an exact repulsive inter- \\iqely discussed “second minimum” of the total interaction

macroion Yukawa potentialg(x) =A exg—«(x—1)Ix, «  potential V(r) that leads to the liquid-liquid phase separa-
=kpog being the reduced Debye kel wave number, has tjon.

recently been derivefl,2]. There are two main characteris-  The existence of a second minimum in the intercolloidal
tics of this ¢(x) that differentiate it from the widely used particle potentiaM(r) has been an issue of continual inter-
DLVO model[3]. The first characteristic is the derived cou- est. In their classic monograph, Verwey and Overbggk
pling constantA, which depends on the macroion volume discussed the phenomenon of coagulation drawing attention
fraction » and, as a result, the model is appropriate for studyto the London-van der Waals attractive interaction as the
ing colloidal dispersions ranging from a lower-density “lig- possible cause for the occurrence of a second minimum in
uid” phase (an analog of a gasto a higher-density liquid V(r) that gives rise to the weak reversible coagulation. Vari-
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ous controlled parameters pertaining to a charged colloidahtere. It appears that considerable improvement can be
dispersion such as the,, «, Hamaker constam, surface achieved in bridging theory and experiment if further refine-
potential ¥, etc., have been measured and varied, and theggent of the present theory is made. Finally, we summarize in
were analyzed using the simplified model of DLVO theory toSec. IV all of our calculated results.

show the change iN(r), in particular the magnitude(r )

at the second minimum positiony,, and the accompanied Il. THEORY

potential barrier height lying between the primary minimum

andr,,. Since this pioneering work, experimental efforts in . In this section, starting v_wth_the the(_)ry of mtegral equa-
understanding the second minimum of spherical charged cofion, we construct an _effect|ve |nterpart|_c|e potential for two
harged colloidal particles. Then, following closely the work

loids as a possible mechanism for the weak reversible coagl?- . X
lation have been carried out independently by Schenkel an fV|ctorlgnd Hanlserllilz], \a’e ?_lppllyr:hle V%CA perturbaUc;n
Kitchener[7], Long, Osmond, and Vince8], Kotera, Fu- theory [15] to calculate the Helmholtz free energy of a
rusawa, and Kubg9], and more recently by Gotoht al. charged colloidal dispersion.

[10]. Theoretically, Grimsorj11] proposed a simple mean- _

field theory to study the phase separation of a weakly A. Total potential energy

charged colloidal dispersion. His results have been criticized |et us begin with the multicomponent Ornstein-Zernike
by Victor and Hansefl2] to be inadequate for quantitative (Oz) equations given by

studies of phase equilibria. Victor and Hansen subsequently

advanced a first-order thermodynamic perturbation theory , o

and showed from calculated phase diagrams the possibility hii(r)zcii(r)J’;o p'f ha(fr=r"Dey(rdr’, (1)

of predicting the weak reversible coagulation in terms of the

V(ry). Their work has been extended by Kaldasch, Lavenwhere p, is the number density and specieg, and| are
and Stein{13] to second-order correction and included stud-defined as,j,I=0 for macroionsj,j,I=1 for counterions,
ies of the liquid-solid coexistence phases. Since the works oindi,j,1=2,3, ... forother small ions such as an added
Victor and Hansen and of Kaldasch, Laven, and Stein, therglectrolyte. In Eq(1) c;;(r) is the direct correlation function
appears to be no further theoretical work in the literafd®d  gng hij(r)=g;;j(r)—1 is the total correlation function writ-
devoted to Studying the mechanism of the second minimu%n in terms Of the pair-corre|ati0n functlcgh(r) It was
on the phase separation at the same level of quantitativehown by Adelmari16] that the small iongcounterions and
analysis. It is therefore of great theoretical interest to revisitgiong in Eq. (1) can be neatly integrated to yield a one

this problem given that a many-body statistical-mechanicgomponent Oz equation for the macroions whose effective
means of calculating the charged intercolloidal particle interyirect correlation functioreSi(r) satisfies

action has emerged and the constructd) interprets ac-

curately and reliably[4,5] the charge-stabilized colloidal

structures. hoo(f)zcgg(r)+PoJ hoo [r=r'D)cgo(r ) dr’.  (2)
Our motivation for this paper is twofold. First, we shall

apply the Belloni model to the study of phase separationpencting the Fourier transform af(r) by c&f(g), it can be

Differing from the_; D!_VO model, j[h(_a Belloni model mcIudes.ShOWn further1,4] that

somewhat quantitatively the statistical-mechanics property in

the intercolloidal particle potential. The latter is manifested e . N , lLagt St (a)]?

by its coupling strength depending explicitly ap whose coo(q)zcoo(q)+2 [Coi(a)]-—

limit »—0 is the DLVO model. Second, we shall, wherever =1

possible, compare the calculated results with experiments to )

reveal _the _pote_ntial usefulness of the present method. Hopg\;here the 3(q) is the shortrange part oft; (q),

fully this will stimulate further experimental endeavors. The ~_ nEe . ) !

paper is therefore organized as follows. In the next sectiorkp = 1/VZi-1¢] is the Debye Huokel screening length, and

we give a brief account of the repulsive potential betweerr!=4mLgp;Z?, Lg andZ; being the Bjerrum length and the

two colloidal particles stressing the statistical-mechanics feacharge of a macroion or a small ion, respectively. By treating

ture. Then, we add to this repulsive force the London-van dethe small ions as pointlike particles, an analytical formula for

Waals attractive potential. The total interaction potential inthe inverse Fourier transform of E) can be obtainefil,4]

conjunction with the Weeks-Chandler-Andersé/CA, leading to

[15]) thermodynamic perturbation theory is then employed to

construct an equilibrium colloidal Helmholtz free energy. .efi \_ _ 2/ 2 " exd —kp(r—oo)] -

Our numerical results are presented in Sec. Il far the Coo(r) = —ZgL X exp—kpoyg r =0,

spinodal decompositior(p) the liquid-liquid phase separa- (4)

tion, and(c) the phase diagrams that can be used to under-

stand the colloidal stability. We deduce frofm) our calcu- Where the coupling parameter

lated critical colloidal parameters and they are compared

with early experiments of Kotera, Furusawa, and Ki{iBp chosk(f fcosr(f

whose colloidal conditions closely mimic the ones discussed 2 2 2

0% +kp

J+u
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in which are buried the correlations between macroions anc
small ions, depends not only cabut also onn= TrpooS/G
through U=(8¢/«x®*—2v/k) in which {=379/(1—7), v
=, +2)/[2(1+¢+T',], and

(M2=k)[2(1+ ) +T,12=969(Z oo)Lg.  (6)  BV(X)

GivenZzZ/ oy, k, and, Eq.(6) has to be solved foF , and
henceX in Eq. (5). It is easy to show thaX— exp(/2)/(1
+ «/2) in the limit of pg— 0, a linearized DLVO result. This
implies that the present model is appropriate for the descrip-
tion of a suspension of charged colloids at any finite concen-
tration.

We turn now to a discussion of the result of Ed). First
of all, we recall from the literaturgl7] that the pair distri-
bution functiong(r) can be defined quite generally in terms
of the two-body colloid-colloid potential of mean foregr)
by the relation

—_
-~
4

g(r)=exd —B¢(r)], (7)

whereB=1/(kgT) is the inverse temperature. If we compare
Eq. (7) with the hypernetted-chain closuf&nown to be
highly accurate for Coulomb liquidlsvhich is given exactly

by

l______.--_._(,3

g(ry=exgh(r)—c(r)—Bv(r)], (8) FIG. 1. Schematic diagram for a suspension of charged colloids
in the presence of an excess electrolyte. The positions of extrema

we deduce by appealing to E) that B¢(r)=—pofh(|r are thexy, at the potential barrier and the, at the second mini-
—r'|)e(r’) dr’+ Bu(r); thev(r) is therefore airecttwo- ~ mum.
particle potentialsuch as the low-density DLVO potential
and the¢(r) is thus to be interpreted as a potential of mean
force for any two particles separated a distande thermal
equilibrium with all the other particles that play the role of
contributingindirectly to ¢(r). In the widely used DLVO  andA is the Hamaker constant. Note that the uses(f) as
model in whichp,—0 the one-component OZ equation of our repulsive potential for the charged colloidal dispersion is
Eg. (2, will be described quite well byh®YO(r)  physically more realistic than the DLVO counterpart since
~cPYO(r). Sinceh®VO(r)=gP-YO(r)—1, and that in the the coupling constarX is 7 dependent and is appropriate for
limit po—0, gP-VO(r)~exd —Bu(r)]. Linearizing the latter studying phase equilibrium properties such as trav-
function  yields  hPYVO(r)~exd—puv(r)]-1~—pBv(r)  density liquid-(high-density liquid phase separation.
=cPVO(r), which is none but the MSA closure. In view of
this, it is natural to write Eq(4) as cgo(r)=—B4(r) and B. Week-Chandler-Andersen perturbation theory
interpret(r) to be an effective two-body potential of mean _ . _ ) . )
force, for theX in ¢(r) depends ony and hence includes For convenience in the following discussion, we rewrite
indirect contributions, albeit approximatefin the sense of Ed-(9) in the form
utilizing the MSA closure in calculating the various correla- _ _
tions between the macroparticles and small joige thus V(x)=A exfl— k(x—1)]  AHOY
see at this point that by setti g(r)= —B¢(r) in Eq.(4), we X 12A
are in fact establishing a more realistic repulsive potential hereA=Z§LBX2e"‘ in the present model. To apply the

r) for charged macroparticles. The total potential ener ’ . . )
(1) g part P ! g WCA perturbation theory, we first splif(r) into two parts,

of interaction between two charged colloidal particles is then i . .
a repulsivev, and an attractive ,; the former constitutes a

1 1
H(x)=ﬁ+7+2 In

1
1— P’) (12)

=Ae(x), (12

V(1) =¢(r)+v,qur), (9) reference system, while the latter is treated as a perturbation.
For the charged colloidal dispersion, the separation is done
where, expressed in reduced distareer/ o, as follows. In the first place, we note that the structure of
V(x) for an excess salt constart>1 changes asymptoti-
AH(x) cally from a negativeV/(x) to a(second minimum V(xy,),
Vodw(X) =~ 5 10 continues further to a positive maximum barriéfx,,), and
then crosses over to an infinitely de@st) minimum. Fig-
is the van der Waals attractidB] with ure 1 displays schematically a typical structure/¢k). The
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extremaV(x,,) andV(xy) can be easily determined by the Now, it was shown in Ref.18] that the reference free energy
conditionV’(x) =0, which leads can be calculated by carrying out a functional Taylor series

expansion inA=exd —Bv,(X)]—exd —BvX)]. Keeping to
(e 2

2 first order inA, the S can be determined by the equation:
2k

+1
y —0, (13

Y w2l 1+ 12—
o

- 2 4y
wherey = k(x—1) andy=24A/(Ax). The existence of the Jo B(x)x"dx=0, (19

extrema has two immediate consequences, which have been

investigated experimentally. At the second minimum posiwhere the “blip function”

tion x,,, it was observed by Kotera, Furusawa, and K{®Jp

and otherg7,8] that a charged colloidal solution would un- B(x)=Y,(x)A. (20
dergo a reversible coagulation. The characteristic depth of

the potential well ranges from a felT to approximately The function Y,(x) in  Eq. (20 is Y,(x)
15kgT. For such a phenomenon to be realized, the potentiat exd Bvg(X)19,(X), 9,(X) being the pair-correlation function
barrierV(xy) at thex,, must also be high in order to prevent evaluated aty. Note thatB(x) is nonzero only in the range
the energetic colloids falling into the primary minimum at Xy<X<Xg and in conjunction with the fact that both the
which place an irreversible coagulation occurs. ExperimentaY ,(X) and its derivative are continuous at the contact point
works on polystyrene charged latices in wdig)9] indicate  x=S, we may perform, as in Verlet and W¢i$8], a sys-
that an order ol (xy)~15ksT would be sufficient for ob- tematic expansion of?Y,(x) aroundx=S, i.e., in powers
serving less unambiguously the weak reversible coagulatioraf (x—S). The leading term in this expansion leads to the
In view of this global structure o¥(x), it is natural to write  density-independent Barker-Henderson diam&ter

= Xm
VO =ui)+va(x) 4 S=xM+f {1—exd — Bu,(x)]}dx. (21
and choose the repulsion M
v (X)=%, X<Xy, This expression. foS can pe written[18] to vary asS~1
+ s/ k+O(1/«?) in which sis a numeric constant. Although
=V(X)=V(Xp), Xpu<X<Xm, we shall be interested in cases @1, we prefer to retain
the exact form forS Having determineds, the problem of
=0, X>Xqy, (15 modelingv, by equivalent hard spheres has, so to speak,
been solved, since an analytical solution for the Percus-
as the reference system and treat the attraction Yevick hard-sphere Helmholtz free enerfjy is available.
Using the compressibility equation of state, one obtains
Va(X)=0, X<Xq,
3n(2— NE
=V(X), X>Xp, (16) Bfp= Zz’i_ 77;’2) +In 11’77) +in ET) 1@

as a perturbation. Now, in the WCA theory, one can take

advantage of the strong Coulomb repulsion for charged colwhere\t=h/y27mkgT is the de Broglie wavelength and
loidal particles and make reasonable approximation on th&=ma>/6 is the effective hard-sphere volume. We should
reference part. As displayed schematically in Fig. 1 M) ~ €mphasize that, although we have employed the compress-
in the rangexy <x<Xx, is rather steep and this prompts us to ibility equation of state to derivéys, an equally permissible

consider replacing the, by fs resorting to the energy equation route is also possible, for
the Percus-Yevick closure yields just an approxingfex).
vg(X)=0%°, X<S§, We come now to the calculation of the first-order correc-
tion f, added tof,s. In terms of the perturbation,(r), f4
=0, x>S§ 17 may be written in the high-temperature approximation as

which is a fluid of equivalent hard spheres characterized by a o
sizec=So,, S>1 being a dimensionless constant measur- fi= 127]of dX g,,(X)va(X)X?. (23
ing the “softness” of the macroparticles. This approxima- 0

tion onv, in tum, will lead us to rewrite Eq(16) as This so-called high-temperature approximation, which

v(X)=0, Xx<S amounts to ignoring the spatial correlation of the attractive
é ’ ' perturbation, has been examined by Haneeal.[19] to be
=V(Xy), S<X<Xn, accurate enough for colloidal liquids. Followmg Victor and
Hansen[12], Egs.(18) and (23) can be analytically calcu-
=V(X), X>Xp. (18 lated to read

For a given densityp,, the volume fractionsy= 7o>py/6 Bf = — Tano(1+ 7/2)[{—a(n)]
and 7o=moopy/6 are accordingly related by;=S%7,. ! 2T(1— 7)? ’

(24)
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where, To=A/kg, and

XV (A+2n)[E—a(n) ]+ n(l-n)(1+75/2)

§=In(yi) — k(%) (Ym—S) — XD —Ym) (25

m

<d§(77)_da(7/)
dn dzn

| o

in which

2 _ from which the chemical potentialk can be calculated
01(77)=E &7, (26) straightforwardly byBu= B(fst+ 1) +BPQ/ 7. Further-
=0 more, the isothermal compressibiligg can be obtained by

Here S is the parameter defined in E(@1) and &, are nu-  differentiating Eq.(27) yielding

merical constants angl,,= x(X,,—1). Note that, differing A(BPQ)
from the work of Victor and Hansel2), the£in the present  (pokgTxt) 1=———

model depends omy through theX in . 970
We are now equipped to calculate the pressure and chemi- (1+279)% Tamo[1+77/2
cal potential that both are needed for locating the critical = A= T {(1_ )4[§—a(7))]
points and hence the phase diagrams. Utilizing the Helm- K K
holtz free energyf = fys: 1, [20], we obtain for the pressure 7n(2+3n/2— 7;2/2)/ dé(n) da( 17))
1-7)° d d
o B (1-7 | dy 7
BPQ=m—5 721+ 7l2) (d?E(n)  da(n)
T a2\ dg a0 @
2 2 (1-mn) 7 n
_ liptn® Tame 1
T A=) T T 2 (1—9)° which on further differentiation leads to
|
d o Anp (1429 (9+2) Ta[14+109+77? 7;4/2—27;3+10772+57;(d§(77) da(n))
— kgT Y= [ &~ +
ano[(Po B XT) ] 7o (1_ 7])5 T (1_ 7])5 [g a(ﬂ)] (1_ 77)4 d’/] d’/]

(29

=27 =T7’12( d*&( ) dza(ﬂ)) {773(1+77/2)}(d3§(77) dsa(n)”

(1-n% | dy?  dy? 21— )% || dy? d7y°

We are now ready to calculate the critical points and the locEgs.(28) and(29) for the critical volume fractiony. as well
of points showing the phase separation. The calculated reas the critical temperaturgé, below which a liquid-liquid
sults and their implication will be given in the next section. phase separation is to be expected. However, experimentally,
it is the surface potential’ of charged colloids that is often
ll. NUMERICAL RESULTS AND DISCUSSION available. We turn therefore to apply the approximate for-
mulaZy,=mWegeop(2+ k) [3] for an evaluation of th&,.
a#or a fixedW, the Z,, however, has to be obtained self-
onsistently with thec appearing in the formula, which must
e the same as that in solving E¢$3) and (32) (see Sec.
nc below). The WV is thus an input parameter numerically
fixed at ¥<25mV, which is a range of values consistent
with the linearization approximation used in our theory.

our calculations their measured or proposed colloidal param&!Ven these governing parameters for the charged colloidal

eters as reasonable input data in our theoretical analysis. OfiSPersion, our numerical work proceeds as follows. First,
theoretical results, therefore, are experimentally appealingV€ 2ssign the dispersive host with a monosizg
We believe that our theoretical analysis below should be~ 6000 A, characterize the dispersive medium by a dielectric
very useful for a general understanding of the liquid-liquid onstante=78.5, set the surface potenti#=25mV, and
phase separation in charged colloidal dispersions. fix the temperature of our aqueous coIIo_ldaI Q|sper§|oﬂi at
=293K. For convenience in the following discussion and

for the purpose of comparing with experiments, it is perhaps

more instructive to determine the critical pointg.( «c)
From the formulas given in Secs. Il A and |l B, we need torather than ¢.,T.) since the former is more accessible to

specify the parameterd;, oq, «, andA in order to solve laboratory measurement. Technically these two critical pa-

This section is devoted to a presentation of our numeric
results for phase equilibria followed by an analysis and
discussion of the implication of these data. For concretenes%
we confine our calculations to cases meeting as closely 3
possible to experimental conditiorfsuch as the works of
Kotera, Furusawa, and Kul@®], Watillon and Joseph-Petit
[21], Gotohet al. [10] etc) and employing, if necessary, in

A. Spinodal decomposition
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Given:
T, Vy, €,6,and A

Input :
> M =M with
0<n;<05

Zo=TYEIEGL(2+K)

) 7 2 2 —K
K=KHAK Evaluate: Ta =Zo'Lg X'¢ '/ks
: v
Solve:
N (pOXTkBT)-l =0
ni=n+ : 1= . .
N a/a“"[(f"kaBTv) 1=0 FIG. 2. Flow chart showing the numerical
for Myandm; procedure that leads to the determination of the

K¢ 7, Spinodal decomposition, and coexistence
curves. Thexa in the Belloni model is deter-

Set: mined as in Fig. 4. Note that fap>0.5 the col-
K=1%c, N ="c loidal dispersion has fallen into a solid-phase re-
gion.
Given:
Ko <K S Koo
Solve: Solve:
PPMNQ = BP(ny)Q (PoxtkeT)" =0 at
Brmn = Bi(m) for ] andn}
for Miand Ny
Output :
spinodal decomposition
and

coexistence curves

rameters are obtained by solving E¢88) and (29) for the  dependence of , on %. It can be shown easily from E¢)
thermodynamic conditions pkgTx7) “1=0 and @/d7,) that theX generally decreases with increasingevealing the

X[ (pokgTx7) "1]1=0. The spinodal decomposition phase more dominant role of the geometrical hard-core eftever
boundary is then obtained by solving E@®8) at eachx  the strong Coulomb repulsidnThis explains the decrement

> k., for the solutionsy$ and #;, following a numerical pro-  of k. in the Belloni model as the is increased. We defer
cedure as detailed in Fig. 2. We should remark at this pointo Sec. Il C for a more quantitative discussion of the deter-
that, for given, the addition of electrolytes will tend to mination of k... Figures 8a) and 3b) display our calcu-
decrease the potential barrigf(xy,) and will eventually lated results for a system of monodisperse charged colloids
drive the charged colloidal dispersion into an unstable irrecalculated at two different Hamaker constantd=(1.3
versible coagulation. This would mean that tkewill be X 10 2°J[9,10] and A=3.4x 10 2°J [7]) within the con-
bounded above by a,,,,. For this latter parameter, there are texts of the Belloni and DLVO models. Quite generally, we
quantitative differences between the Belloni and DLVOobserve discernible differences in the spinodal decomposi-
models. In the DLVO model they independence of , has tion areas for the two models considered when the excess
resulted in a unique,.x (VS 7), the corresponding,. in  electrolytex<200, whereas for still largexk>300 the dis-

the Belloni model is somewhat complicated by the explicitparity is smaller owing to the fact thaX—exp/2)/(1
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disparities mentioned above for the cafe=3.4x10 %)

still remain for the situationk>300, shown in Fig. &),
which corresponds to the case=1.3x 10 2°J, although the
magnitudes of differences are less conspicuous. Note that for
this smallerA case the spinodal decomposition curves fall in
the higher» values (0.2% »=<0.5).

B. Liquid-liquid coexistence

Having determined the critical points»{,«), it is
straightforward to calculate the liquid-liquid coexistence
curve by the standard formulas:

BP(71)Q=BP(7,)Q, (30

Bu(n1)=Bu(nn). (31)

Here the low- and high-liquid densities are, respectively,
characterized by volume fractiong; and #,, which are
solutions to the above coupled equations. Given the same set
of parameters &y,A, V) as in Sec. Il A, Fig. 2 shows also
the numerical procedure leading to the physical rogtend

71, Which are solved at eaot> « for the aqueous charged
colloids atT=293K. The liquid-liquid coexistence curves
are included in the same FigsiaBand 3b). Together with

the spinodal decomposition curves, the areas in between de-
scribe the metastable thermodynamic states, customarily
termed the supercooled liquids.

C. Irreversible and reversible coagulation

We turn in this section to the study of the phase separa-
tion in charged colloidal solutions. To this end, we calculate
the phase diagrams, which can be used to gloss over the
coagulation phenomena in a general and realistic way. Let us
start with Eq.(12) for the colloid-colloid potential. If the
potential barrieNV(xy,) is sufficiently high, the resulting col-
loidal dispersion is in a charge-stabilized equilibrium phase
revealing a distribution of charged colloidal particles thermo-
dynamically prevented from an irreversible coagulation. On
the other hand, whel(xy)=0, one would anticipate the

full curve) curves for an aqueous charged colloidal dispersion acharged colloids showing an irreversible coagulation charac-

temperatureT=293 K. The reduced screening parameter «is
=kpog, kp ando being the Debye-Hekel constant and macroion
diameter, respectively. Numerical data used @ge-6000 A, 167
<Kkmax<172 (chain curve [for DLVO, kna,=173.56 (thin-full
curve], Hamaker constanf=3.4x 10 % J, surface potentiall
=25mV, 7.=0.2043(0.2033 for DLVO and x.= 166.5(168 for
DLVO). (b) Same notations as ifa) exceptA=1.3x10 20 J, 451
< Kmax<453 (for DLVO, kma=453.9), 7.=0.3415 (0.3415 for
DLVO), and k,=392.7(393.7 for DLVO.

+ k/2) (the DLVO mode] in this largerx limit. The situa-

terized by colloidal particles thermally collided to fall aggre-
gately into the deep primary minimum. Thus, as one lowers
the V(xy)=>kgT (for example, by adding an excess electro-
lyte or by decreasing th#) which corresponds to weaken-
ing the strong Coulomb repulsion in a charge-stabilized dis-
persion, one is in fact enhancing the chance for charged
colloids to sample contact configurations. On further lower-
ing theV(xy), a stage will emerge where the interaction of
charged colloidal particles, due to increasingly high possibil-
ity of particles coming close to each other, begins to be op-
erated jointly by the Coulomb repulsive force and the

tion «=200, depicted in Fig. &), corresponds to the case London-van der Waals attraction, leading in this case to the
A=3.4x10 2°J, where both models delineate spinodal de-appearance of a second minimwi{x,,) in the potential

composition curves covering lower values (0.1% 7%
=0.275) but predict an almost identicgl.; quantitatively
the spinodal decomposition regi¢and the critical poini.)
in the Belloni model is seen to be slightly broad@nd

function V(x) (see the full curve in Fig. )1 Depending on
the valuesoy and A, the V(x,,) varies in magnitude from a
value, for microscopic particleof;~300—3000 A)[7], gen-
erally of the order of +10 kgT [3,7,8,29 to a value, for

lower) compared with the DLVO model. Similar noticeable largero, (=4500A), of the order o¥/(x,)>10kgT [9,10].
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studying the liquid-liquid phase separation is to establish a
To, W, €, Goand A relation between th&, andT,. The former, at fixed param-
etersk and ¥, is a function ofoy and », while the latter,
which correlates closely the stability information of the col-
loidal dispersion, affects sensitively the structure\&fx)
nearx~X,, [10]. There is, however, one important point that
deserves paying attention to. Since water freezesrT at
= 273K, the calculation of the phase diagrdm vs T, has

, Initial guess:
K= to be performed to yield a physically acceptable value of
T.=273K in addition to making sure that its magnitude is
70— TyEsEou2r) not exceedingly large thatgT.>V(xy). Bearing this in
Evaluate Ty =Zo’LpX’e ks mind and considering the possibility of correlating the calcu-
lated results with measuremer(ich as those reported by
I Kotera, Furusawa, and Kulj®]), we have therefore sét,
Solve: =T,=293K. Now, to locate the loci of th&,— T, phase
¥ = TAASTo)*(1 -1, boundary, it is more convenient to inplf and solve for the
x-1<<1 T, and 7. from Eqgs.(28) and(29). For theT, values, they
Y=expm)iym . K>>I are reasonably selected from the empirical range 500K
for?yand yy, and <T,<10*K [24]. This numerical procedure differs from
that of Victor and Hansefl2], for the T, in the Belloni
model depends om whose critical valuer. has to be ob-
K = KTAK Check: Set : tained self-consistently as detailed in the flow chart of Fig. 5.
Ie-walfie <10 Konax = Ko Figure 6 shows our determindd, vs T, compared with the
DLVO results calculated under the same colloidal condi-
tions.

Let us scrutinize Fig. 6. There are three general aspects
that merit emphasis. The first aspect is the occurrence of a

Output: . ; ; .
Koo minimum T1""=50315 K atTy"=1100 K. Recalling, by
definition,
FIG. 4. Flow chart showing the numerical procedure that leads )
to the determination of the,, in the Belloni modelsee text ZiLgX%e ~ 33
AT T
B

In particular the second minimum position of the former is

generally located at a largeq,, compared with the latter j; implies that, for givenk, ¥, and 7., there exists a mini-
whosex, is located distinctly nearer to the contact distancey,ym oo below which no liquid-liquid phase separation is
r=og . A subtle and delicate matching of thé(xy) and  anticipated. For the Belloni model, the set of valueg (
V(Xpy) is thus an important criterion for realizing the revers- =0.3137, ¥ =25 mV, T,=293 K, and e=78.5) yields
ible coagulation. Such a coagulation condition on chargeq,.g\in:5120 A, which is slightly larger than therI'™"
spherical colloids, deduced from the propertygk), hasin  _5095A in the DLVO model. At thiss™", the Hamaker
fact been employed by experimentali§¥s9,10 to interpret constant isA=1.518< 102 J. At this point, it is perhaps
the o_bserved §ignature of the revers.ible coagulation. Thg,jhwhile to enquire if the presefit, vs T, curve has any
question now is: what are the magnitudes\ifixy) and  ygjeyance to previous experiments. As pointed out above, the
V(xp) for a liquid-liquid phase separation to happen, know-gne early experiment on charged spherical colloids in water
ing that all of the parametei,, oo, «, andA can influence \yhose colloidal conditions closely mimic the present theory
V(x)? _In view of the difficulties in stipulating an unambigu- s that of Kotera, Furusawa, and Kub@]. We now discuss
ous criterion, we have chosefi(xy)=15 kgT [23] whose i1 experimental findings of the latter work and see if these

value is selected in consultation with previous experimentsqgits can be correlated with the presently obtaifigdvs
[3,7,8,9,10,22 Subject to this constraint, E¢12) reads T, curve. In their colloid chemical studies of polystyrene

latices, Kotera, Furusawa, and Kubo appealed to the optical
1 15T, i . . ;
o(yw~exd —yul— — = —, (32) and microscopic methods, and investigated the effect of the
YWn o Ta second minimum on the colloidal stability for a series of

“soap-free” polystyrene latex particles varying ing(W)
whereT,=A/kg, yy is the solution of Eq(13), andTyisa  from 3500 A (23 mV) to 13740 A(29 mV). They deter-
temperature to be discussed further below. As depicted imined the critical flocculation concentration of KCl for each
Fig. 4, Egs.(13) and(32) lead to a minimum value of and o using the transmission coefficient of light as well as mi-
hence[by the relationk=24T, /(yTA)] @ maximumk,  croscopy, and found that the critical flocculation concentra-
for a given set of A, T,) values. These parametric values for tion varies anomalously with the, and¥. In consultation
the yy and k., imply that a useful parametric space for with two earlier publication§21,25 (see also Ref.10] for a
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Given:
Ay, € and Ty (=Tc);
K = & (initial guess)

y

Choose a macroion size :
100nm < 6, < 1400nm

Initial guess :
n="n <

v
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v

Zy = TYEECA2+K)

Evaluate: Ta = Zo’LgX e “/kp

v

Solve:

v=TA(15To)(1/ym -1 n),  x-1<<1
'Y=exp(yM)/yMz, >1
foryandyy, and

Calcuate: k= 24T /(YT 4)

K=K+AK

no

FIG. 5. Flow chart showing the numerical

procedure that leads to the determination of the
n=NAN T, Vs T, . Self-consistency in obtaining the,.,

Set:
Kmax= Kt

v

and then dependence i, have been fully con-
sidered.

Solve:

(pOXTkBT)-l =0
d/ono[(poxTkeT)"'] = 0

for T]‘;and“r]i,

Ifln L_n ; ‘310-4 no

Output:
Nc, Kmax, Taand hence
(Ta,Ta) phase diagram.

more recent discussion on the of the polystyrene-water roughly in the range 7000—8000 A. Referring to Fig. 8 for

mixture), these authors proposel=1.3x 10 2°J for their
measured polystyrene-water system. Using their measurethich corresponds tdl,=942 K, the corresponding ,

data for theo, W, and critical flocculation concentration,

we plot in Fig. 7 the change df(x) function with o5. A

striking characteristic of thes¥é(x) can be recognized. In
going from o,=3500 A to 13740 A, it is clearly seen that

the V(x) varies from a shallow second minimuyf(x,,) ac-

companied by a lowe¥(x,,) (for co=4000A) to a deeper

V(x,,) accompanied by a high&f(x,) (for ox>5000A).
In particular we notice that th&/(x,) for the caseoy

=<4000A is located ax,,~1.04[26] somewhat farther than
Xm~1.004 for the case,>>5000A. Based on their analysis

the o vs T, stability curve, at the valuA=1.3x10 2°],

=50691K yields immediatelyg""=5152 A, at which place
Kmax=374.7. Thisog"" is lower than the range af, values
noted above. We should remark, however, that¢§¥' de-
duced here is fixed aF =25 mV and is not exactly the same
as those given in Kotera, Furusawa, and Kubo'’s work. In fact
the ¥ in Kotera, Furusawa, and Kubo's experiments in-
creases gradually witlry. As clearly displayed in Fig. 7,
such changes inP will tend to raise the potential barrier
V(xy) [3] accompanied by a deepening\éfx,,,) due to the

o, increment. Nevertheless, it is encouraging to note that our
min

of the time-variation curves of transmission coefficients fortheory predicts arg""=5152 A below which an irreversible
the latex particles, Kotera, Furusawa, and Kubo conjecturedoagulation sets in. This feature is consistent with the experi-
the “crossover” oq, which differentiates an irreversible co- mental observation of Kotera, Furusawa, and Kubo where
agulation phase from that of a reversible coagulation, lyingboth aqueous polystyrene latticas,=3500 A and o
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120000 ————————1—— 1 T
i o | 12000 - o
100000 | . 1 10000 | . ]
T, < o s . ]
L 9 4 [ g
80000 |- - 8000 - . 7
. I
Q9 L 7 4
i 1 6000 15 & .
60000 |° o - K 1
2 DooQ | L M
I 4000 i Lo L ol
F 0 2000 4000 6000 8000 10000
40000 o L Ta
0 2000 4000 6000 8000 10000
Ta FIG. 8. Plot of macroion size-y vs T, for an aqueous charged

colloidal dispersion calculated &t,=T.,=293K and forV(xy)
=15kgT (see text Notations: Belloni, closed circles; DLVO, open
circles.

FIG. 6. Plot of T, vs T, for an aqueous charged colloidal dis-
persion calculated ak,=T.=293 K and forV(xy,) =15 kgT (see
text). Notations: Belloni, closed circles; DLVO, open circles.

—4160 A were found to exhibit irreversible coagulations as'€2/izéd in an aqueous monodisperse charged colloid com-
confirmed from an analysis of the time variation of the trans-20Sed either of a higher density){=0.4775) colloidal par-
mission coefficients. ticles dispersed in a d|elzeéctr|c medium characterlzgd by
The second aspect of tiig, vs T curve is its prediction @ Smaller A (0.7355<10°“" J) or of a lower density
of an interesting coagulation feature for a monodispersé”czo-lgqlz)o colloidal liquid having a larger A
charged colloidal dispersion. Stipulating a giveg, 6000 A (3:679<10°“" J). Since the Hamaker constant sensitively
say, in the range 51200,<6200A [27], which corre- reflects the depth of the second minim{ig)10] as does the
spo,nds toT , =58 320 and 59 209 in the B'elloni model, Fig. electrolyte concentration, it would be a challenging experi-

9 reveals the fact that the agglomeration phenomenon can Bental endeavor to explore the ease of observing the weak

20 T
90 ] I
;
60 10 - g
V(x)
30 fii Vix)
0
-10 |
-30 I L1 L
1.000 1.005 1.010 1.015 1.020
X

o0 il
0.99 1.01 1.03 1.05 1.07

FIG. 7. Intercolloidal particle potential functiov(x) (in units X

of kgT) vs x=r/o calculated using the DLVO repulsive part plus

Eqg. (10) at temperatureT =293 K for polystyrene colloids with FIG. 9. Intercolloidal particle potential functiov(x) (in units
00=23500 A (thick-full curve), 4160 A (thin-full curve), 7580 A of kgT) vs x=r/o, calculated using the Belloni model for the
(thick-dashed curye 10 780 A (thin-dashed curye and 13740 A repulsive part plus Eq(10) for charged colloids withry=6000 A
(chain curve. The reduced critical flocculation concentrations at temperaturd =293 K. The stability “points” for the samer,
and surface potentia¥ are (214.1, 302.4, 746.1, 1011.7, 1188.9 which can be read from Fig. 8, arA=3.679¥ 10720 3, Ne
and(23, 25, 27, 28, 29 m)/ respectively. The Hamaker constant is =0.1961, ky,=157.2 (thick-full line); A=0.736x10"2° J, 7,
taken to be 1.81072°J for all 0. =0.4775, kma,=800.7 (thin-full line).
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reversible coagulation for monodisperse charged colloidaliquid coexistence curves within the Belloni model show a
solutions at thes@ and to understand the experimental re-shift in «. to lower values and enclose a larger area com-
sults from the theoretical modétompare, for example, the pared with the DLVO model.

V(x) depicted in Fig. 9 for these colloidal conditionSuch (2) For an excess salt concentratiess 200, the quantities
experimental setups should not be too difficult to accomdindicated in point(1) using the Belloni model differ larger
plish. from those obtained by the DLVO model, whereas for

The third aspect is the much less likelihood for a charged>300 the differences in the corresponding results between
colloidal dispersion to undergo the liquid-liquid phase sepathe two models are smaller.
ration if its Hamaker constamt<0.53x 10" 2°J, for theA in (3) The stability curve determined in the Belloni model,
this region, has already assumegd>0.5, which is the re- which marks a separation of an irreversible and a reversible
gime of solid phase. If one were to accept the rangé of coagulation for aqueous charged colloids near room tempera-
spanning 0.5 10" ?° J<A<5x10 ?°J to be experimentally ture, predicts a minimum size of approximately 5000 A,
accessible and to confine our study to a fixEe<25mV,  which is quite consistent with early experiments reported by
there then exist lower limit of-j"" values(along the coagu- Kotera, Furusawa, and Kubo who observed, from an analysis
lation stability curve given by Figs. 6 or)8serving the of the time variation of transmission coefficients, an irrevers-
boundary between the irreversibled<of'") and weak re-  ible coagulation for two aqueous polystyrene lattices whose
versible =" coagulations. To keep within this range macroion sizes are;,=3500 A ando=4160A.
of A for a largero, one would generally have to increa#e (4) For any monodisperse charged colloids whose macro-

(>25 mV) in order to simulate a higher potential barrier ion size falls into range 51200,<6200A, it is possible to
[since theV(xy) decreases with increasing, but it in-  ©bserve the coagulation phenomenon characterized by either

creases with increasing [3]]. a higher-density colloidal dispersion having a smalesr a
lower-density colloidal solution pertaining to a largr
(5) For an aqueous charged colloidal dispersion, our ther-
modynamic perturbation theory disallows the Hamaker con-
We draw attention to a realistic statistical-mechanicsstantA<0.53x 10 2°J for observing the liquid-liquid phase
model suitable for delineating the structures and the thermaseparation, because in this region the system has already had
dynamics of concentrated charged colloidal dispersions. Dif4.>0.5 and hence has moved into a solid phase.
fering from the usual DLVO model, the model is valid for
any fjnite concentrgtion of macrqiqns. The'mc.)de'l is.therefore ACKNOWLEDGMENTS
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